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ABSTRACT 

This paper presents Secure Comparator, a way to implement Zero Knowledge Proof algorithm 
called Socialist Millionaire’s Problem, to compare secrets between two parties. Compared to 
existing implementations, Secure Comparator provides better security guarantees, stronger 
cryptographic math, and, possibly, more integration-friendly architecture.  

Keywords 

Zero Knowledge Proof, Socialist Millionaire’s Problem, authentication, passwords, ed25519, 
Elliptic Curve Cryptography. 

Update note: Revision 1.2 addresses dishonest prover problem, pointed out by community 
feedback, in section 5.3. 

1. Introduction.  

The password is the oldest and the most widely used pillar of authentication. In the modern 
technologically heterogeneous and distributed environment, password-based authentication is 
frequently the only available method to prove identity to a third party. 

Being a secret, it’s best protected when it never leaves the safe zone. Proving identity involves 
communicating the secret to another party, which eventually exposes the whole or a part of the 
secret, in a direct or indirect (hashed) form. In the real world, authentication traffic passes 
thousands of systems between a prover (you) and a verifier (an entity which eventually decides 
whether your secret is valid and you deserve the privileges you claim).  

While communicating it, you open the secret to various threat vectors, which expose it to attackers 
in one or another way. 
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2. Existing Authentication Methods and Motivation 

Existing authentication methods provide some levels of protection, but each of them has significant 
drawbacks.  

So far, most security systems have used only three types of cryptographic primitives: encryption, 
key agreement, and digital signatures. Authentication secret security is achieved by combining 
some of this primitives in a protocol. 

Over time, each authentication method in Internet systems was exploited in some way, and required 
new techniques to provide better security guarantees and mitigate attacks: 
- for plaintext passwords all kinds of passive traffic interception attacks were used; 
- once parties started exchanging hashes, dictionary attacks and active browser attacks (using a 

hash to fake authentication handshake) became used; 
- once parties started to use strong authentication, which was based on key agreement algorithms, 

man-in-the-middle attacks to degrade ciphers became used;  

As history evolves, more and more modern data protection techniques fail against sophisticated 
attacks. Wouldn’t it be great to avoid transmitting passwords at all? 

3. Zero Knowledge Proof  

Basing on problems above, we propose building secret-based authentication around Zero 
Knowledge Proof: a method for one party (the prover) to prove to another party (the verifier) that 
some statement is true with following properties [1]: 
1. Completeness: if the statement is true, the honest verifier (that is, one following the protocol 

properly) will be convinced of this fact by a honest prover. 
2. Soundness: if the statement is false, no cheating prover can convince the honest verifier that it is 

true, except with some small probability. 
3. Zero-knowledge: if the statement is true, no cheating verifier learns anything other than this 

fact. This is formalized by showing that every cheating verifier has some simulator that, given 
only the statement to be proved (and no access to the prover), can produce a transcript that 
"looks like" an interaction between the honest prover and the cheating verifier. 

The first two properties form the basis of authentication and can be achieved by a proper 
combination of other cryptographic primitives. The last property ensures the protocol flow and 
outcome is meaningful only to honest protocol participants and nobody else. In other words, the 
protocol by design does not leak any auxiliary information to the third-party observers or even the 
verifier. 

3.1 Socialist Millionaire’s Problem (SMP Protocol) 

Socialist Millionaire’s Problem allows two parties to verify whether the secret they use is identical  
without allowing either party to learn anything else about the other's secret value. That is, if 
communicating parties’ secrets do not match, no party learns anything more that this fact.  
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Zero Knowledge Proofs have been scientifically studied and verified for two decades now. We’ve 
picked Socialist Millionaire’s Problem for its simplicity, and good track record in OTR protocol, 
where it is used to authenticate remote parties.  

3.2 Benefits of SMP 

In short, the SMP usage allows achieving the following benefits: 

- a new mechanism for HTTP password authentication (ensures that password or hashes of the 
password never gets sent over the wire); 
- a new way to confirm established secret key after the key agreement; 
- a mutual authentication mechanism; 
- remote attestation mechanism; 
- an insider-resistant OTP reinforcement. 

4. Secure Comparator 

Secure Comparator is an SMP-based authentication method, which we use to compare secrets like 
passwords and access tokens. We have strived to get better security guarantees, than existing SMP 
implementations, and more flexibility. 

4.1 Hardening SMP  

To build authentication scheme around SMP, we have used OTR protocol as a reference.  

However, OTR uses 1536-bit group algebra as the basis of their computations. Since SMP is very 
similar in operations to Diffie-Hellman key exchange, it is subject to almost same security 
considerations. The recent disclosure of the LogJam attack on TLS protocol [4], which targets 
Diffie-Hellman key exchange, provides proof that 512-bit groups might be practically cracked 
today using number field sieve algorithm. 

The same paper provides estimates that 1024-bit groups may already be vulnerable now or will 
become vulnerable sometime in the near future. Based on the above we feel that 1536-bit might not 
provide adequate security level. In addition, we preferred to have a more fundamental solution to 
this than just increasing the field bit size, which puts extra pressure on both algorithm speed and 
memory requirements. Therefore, we decided to harden the SMP by re-implementing it based on 
Elliptic Curve Cryptography.  

Both SMP and DH security is mostly based on discrete logarithm problem (DLP): finding an 
exponent used to compute the power of some base in a cyclic group does not have algorithms with 
polynomial time complexity. However, in ECC domain this problem is considered even more 
secure, because, unlike in prime-field algebra, where such algorithms exist with sub-exponential 
time complexity, only exponential time algorithms exist for ECC. 

To make SMP (as well as most of the DLP-based algorithms) ECC-enabled, following has to be 
changed in the algorithm flow: 

- choose target ECC domain parameters; 
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- introduce deterministic mapping of secret and random protocol values to big integers greater than 
0 and smaller than ECC field base point order; 

- replace all prime-field group multiplications with ECC point additions; 
- replace all prime-field group divisions with ECC point subtractions; 
- replace all prime-filed group exponentiations with ECC point on big integer multiplications. 

After considering all possible variants for a good ECC domain, we decided to use ed25519, 
because: 

- we wanted something better protected from side-attacks than conventional NIST curves; 
- fast and performant; 
- available in public domain, and, preferably, coming from trusted experts (Daniel J. Bernstein); 
- has little or no weak private keys, so above mapping can be designed easily (a simple hash 

function with truncated output). 

However, original ed25519 implementation lacked some basic ECC primitives, so it had to be 
extended for SMP. 

4.2 Extending ed25519 

Even though ed25519 is a good candidate, it is a digital signature algorithm. In SMP, we need a 
different combination of ECC primitive operations and as a consequence - different algorithm 
parameter handling.  

In addition, basic ed25519 boasts constant time operations protecting users' secrets from side-
channel (mostly timing) attacks. Since the code was written with high optimizations in mind, 
ed25519 had a limited subset of operations to start with: 

• Q = d * G - basic ECC base point multiplication; 
• R = s * G + r * Q - sum of two points, where one is a multiple of base point. 

SMP, on the other hand, requires T = u * P - simple point multiplication, but where P is some 
random (not known in advance) point. First two obvious choices were not the right ones to pick: 

1) To implement this operation based on existing features of ed25519, the obvious way was to reuse 
the second function (sum of two points) passing n - ECC base point order - as s parameter. 
Effectively, since n * G = O (ECC zero point), so n * G + r * Q = O + r * Q = r * Q. However, 
first ed25519 operation is constant time, while the second one is not. For digital signature usage, it 
does not create serious threat - the second operation is used only to verify signatures with the public 
key (no secret information is used). In our case, our adapted function may be used to multiply some 
secret random value on an arbitrary point. 

2) The reusing approach, which was taken in the first ed25519 operation (scalar multiplication 
replaced by point addition from a table of a precomputed point factors) also made little sense, since 
its constant time properties are based on a large precomputed table (~30 KB) specifically for G 
(which is constant and known in advance). We cannot afford to do the same computations in the 
process for arbitrary point, because of performance considerations: since we may receive a random 
point from our peer we would have to recompute the table each time. 
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Instead of trying to make the operation constant time, we decided to take the blinding approach. 
Let’s suppose we want to compute R = d * Q: 

• generate random integer rnd 
• compute R = rnd * G + d * Q - variable time, where the attacker can only get some information 

about rnd + d, but since they know neither d nor rnd, it is similar to as if d was encrypted by rnd 
• compute P = rnd * G - constant time operation, available in original ed25519, so attacker gets 

nothing 
• compute R = R - P = rnd * G + d * Q - rnd * G = d * Q - constant time operation (simple point 

subtraction, does not involve secret handling) 

5. The Protocol 

Our SMP protocol is very similar to SMP implementation in Cypherpunk’s OTR [3] except that we 
use ECC for all computations.  

Let’s suppose we have two parties with secrets x and y respectively, and they wish to know whether 
x == y. They use ed25519 curve with G as a basepoint. Alice starts the protocol: 

• Alice 
• picks two random numbers: a2 and a3 
• computes G2a = a2 * G and G3a = a3 * G 
• sends G2a and G3a to Bob 

• Bob 
• picks two random numbers: b2 and b3 
• computes G2b = b2 * G and G3b = b3 * G 
• computes G2 = b2 * G2a and G3 = b3 * G3a 
• picks random number r 
• computes Pb = r * G3 and Qb = r * G + y * G2 
• sends G2b, G3b, Pb and Qb to Alice 

• Alice 
• computes G2 = a2 * G2b and G3 = a3 * G3b 
• picks random number s 
• computes Pa = s * G3 and Qa = s * G + x * G2 
• computes Ra = a3 * (Qa - Qb) 
• sends Pa, Qa, Ra to Bob 

• Bob 
• computes Rb = b3 * (Qa - Qb) 
• computes Rab = b3 * Ra 
• checks whether Rab == Pa - Pb 
• sends Rb to Alice 

• Alice 
• computes Rab = a3 * Rb 
• checks whether Rab == Pa - Pb 
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If the Rab == Pa - Pb check succeeds then each party is convinced that x == y. Since Rab = (Pa - 
Pb) + (a3 * b3 * (x - y)) * G2, iff x == y, Rab = (Pa - Pb) + 0 * G2 = Pa - Pb. If x≠ y, then a3 * b3 
* (x - y) * G2 is a random ECC point not known to any party, so no information is revealed. 

5.1 ECC-Specific Considerations 

All numbers used in ECC calculations for best security must be less than ECC base point order. For 
ed25519, a suitable number is any 32-byte array, but with three last bits cleared in the first byte, 
first bit cleared and second bit set in the last byte. This applies to any random numbers used as well 
as for the secrets themselves. 

5.2 Hashing Secrets 

We do not directly use secret information in SMP calculations. To allow arbitrary length string to be 
compared, we hash all the information and compare hashes instead. Currently, we use SHA-256 for 
that. 

5.3 ECC-based non-interactive zero-knowledge proofs of knowledge 

To enforce communicating peers strictly follow the protocol and to prevent one of the (possible 
malicious) parties to falsify the protocol outcome [10] and [3] use non-interactive zero-knowledge 
proofs of knowledge to create and verify proofs that each intermediate parameter was generated 
according to protocol. 

[10] describes such zero-knowledge proofs of knowledge based on extended version of Schnorr’s 
protocol. Since our ECC-based implementation utilizes ed25519 curve, which is the basis for 
elliptic curve variant of Shnorr’s signature scheme, it is easy to transition those proofs to ECC 
domain taking into account provisions set in [11], namely: 

• all random numbers should be 32 bytes long with three last bits cleared in the first byte, first bit 
cleared and second bit set in the last byte 

• instead of shorter hash functions we use SHA-512 
• whole output of hash function is used: hash function output is treated like a big number and 

reduced by q = 2^252 + 27742317777372353535851937790883648493 before doing further 
computations 

• signatures should be 64 bytes long with first three bits cleared in the last byte 

We describe ECC-variations of used proofs (which mirror their counterparts in [10]) below. 

5.3.1 Proof of knowledge of EC discrete logarithm. 

Given a curve with generator G and its order n Alice can prove to Bob she knows 0 < x < n such 
that Q = x * G by: 

• selecting random integer r: 0 < r < n 
• computing W = r * G, c = SHA512(W), d = r - xc mod q 
• presenting (c, d) to Bob 
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Bob verifies the proof by checking c == SHA512(d * G + c * Q) 

5.3.2 Proof of knowledge of EC discrete coordinates. 

Given a curve with generators G1 and G2 and their order n Alice can prove to Bob she knows 0 < 
x1 < n and 0 < x2 < n such that Q = x1* G1 + x2 * G2 by: 

• selecting random integers r1, r2: 0 < r1 < n, 0 < r2 < n 
• computing W = r1 * G1 + r2 * G2, c = SHA512(W), d1 = r1 - x1*c mod q, d2 = r2 - x2*c mod q 
• presenting (c, d1, d2) to Bob 

Bob verifies the proof by checking c == SHA512(d1 * G1 + d2 * G2 + c * Q) 

5.3.3 Proof of equality of two EC discrete logarithms. 

Given a curve with generators G1 and G2 and their order n Alice can prove to Bob she knows 0 < x 
< n such that Q1 = x * G1 and Q2 = x * G2 by: 

• selecting random integer r: 0 < r < n 
• computing W1 = r * G1, W2 = r * G2, c = SHA512(W1, W2), d = r - xc mod q 
• presenting (c, d) to Bob 

Bob verifies the proof by checking c == SHA512(d * G1 + c * Q1, d * G2 + c * Q2) 

[10] describes more non-interactive proofs for different scenarios. Those proofs are not described 
here, since our ECC SMP protocol mirrors the one described in [3] and is a variant of “version 
without fairness” ([10]), which does not use the former. 

6. Existing ZKP/ZKPP Systems. 

Although we believe that our implementation is novel, the idea of using Zero Knowledge 
Proofs for password authentication (which is called ZKPP) is not. Below are the two best 
systems we’re aware of, and our explanation what we differ with. 

Lightweight Zero Knowledge Proof Authentication [5] 

The paper describes a classic zero knowledge protocol (based on graph isomorphism) in the 
application within web authentication. Unlike SMP, the protocol is a one-way client-server 
authentication mechanism. The downside of this approach is having soundness error 
probability of 1/2 for one round of challenge-response. Therefore, in order to lower it many 
iterations of the protocol are required. This significantly increases the number of round-trips 
in overall authentication scheme (the paper mentions ~2000). 

RFC 2945: SRP Authentication and Key Exchange System [6] 

Secure remote password protocol was developed primarily to support zero knowledge 
password verification. It also uses DLP and public key cryptography for its operations. 
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Unlike SMP, its use-case (client-server password verification) is embedded in the protocol 
flow. The advantage of this is that server does not have to store plaintext password to do the 
protocol. However, it provides a one-way authentication mechanism, whereas SMP 
implicitly does mutual authentication. From cryptography perspective, SRP requires explicit 
salt to protect from replay attack, where SMP has such protection inherently from its flow. 
Also, because of extended required cryptographic primitives (need to do field element 
multiplication), it is hard to port SRP to ECC domain. 

7. Other uses 

Password authentication is only one narrow use-case; however, being the most obvious and 
demanding, it is presented as the main purpose here. Using Secure Comparator-based 
authentication is not limited to it though, as the system will work with any comparison of 
secrets, which have public identifiers (usernames, customer names, record IDs) and secret 
parts.  

One of the obvious use-cases is enabling two personal data-processing systems to compare 
secret customer identifiers (SSN, Tax ID) between parties without established trust 
relationships, which can be essential in interactions, where request query has parts, the 
disclosure of which can affect privacy or security.  

8. Example Implementation 

We have implemented Secure Comparator in our open-source security services library, 
Themis [7]. Feel free to explore the source code on our GitHub [8], or read the blog post 
outlining various practical aspects of using Secure Comparator [9]. 
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