
© 2018, Cossack Labs Limited, www.cossacklabs.com

HERMES
A framework for cryptographically assured access control and

data security

Eugene Pilyankevich

eugene@cossacklabs.com

Ignat Korchagin

ignat@cossacklabs.com

Andrey Mnatsakanov

andrey@cossacklabs.com

ABSTRACT

This paper presents Hermes – a practical data security scheme with a reference implementation, which

enables distributed sharing and collaboration, enforcing access control with the help of cryptographic

methods (public key cryptography and traditional symmetric cryptography).

Keywords

Persistent storage operations (CRUD), cryptographic enforcements of access control, cryptographic

access control (CAC), distributed information system, encryption scheme.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

1. Introduction

Modern information systems evolve into increasingly complex structures. This paves the way for new

potential security bugs, vulnerabilities, and data leaks [1]. The essential security practices that underpin

modern information systems’ development are the efficient compartmentalisation of components and

restricting the exposure of sensitive information. However, these measures are insufficient when

information systems are required to interact with third-party services and use communication channels,

which cannot be fully trusted [2, 3].

Under such circumstances, only strong cryptographic solutions can provide sufficient proven security

guarantees and ensure unconditional access control enforcement in distributed information systems. It

is in this context that we developed Hermes – a practical cryptography-based access control and data

security scheme with a reference implementation [4, 5].

Hermes enables collaboration and distributed data sharing through enforcing access control with the

help of cryptographic methods (both public key cryptography and traditional symmetric cryptography).

In case of an attack, when one or more of the components within the Hermes framework are

compromised, Hermes will preserve the maximum possible number of security guarantees for the

protected data (a denial-of-service is considered to be the worst-case possible outcome within a

Hermes-powered infrastructure).

Hermes allows distributing only the necessary amount of data between the system components for their

correct operation and, consequently, limits the possible damage that may be done if a component is

compromised.

As the network design of Hermes can be mapped to typical client-server architecture, we can define the

following major advantages of Hermes:

1. An absence of a central point of failure (sensitive data being compromised);

2. No access to both cryptographic keys and sensitive data in plain text for the server side;

3. End-to-end authenticated encryption between all the components (both server side and client

side).

1.1 Problem definition and existing research

Access control and data protection are fundamental security services in the modern computing systems.

In essence, an access control system filters the attempts of client(s) to execute any of the basic data

access operations. This is done by enforcing a set of access rules (permissions) on protected resources,

only allowing interactions authorised by the policy configured by the resource owner(s).

Implementations of access control in software are vulnerable to any compromisation of the machine

that hosts it. Moreover, such enforcement mechanisms do not work when protected resources are stored

by an untrusted or semi-trusted third party, which is an increasingly common practice [6].

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

Cryptographic enforcements of access control have been researched for over 30 years and are now a

mature research topic in itself [6]. When symmetric cryptographic primitives are used, each protected

resource is encrypted and only the authorised clients should have the access to the encryption key. This

control mechanism is implemented via wrapping the encryption key in an asymmetric authorisation

key, unique for each client. We use the term access control keys (ACKs) to denote these authorization

keys in the Hermes’ scope. But, unlike the majority of similar data access control systems, ACKs in

Hermes are used (directly or indirectly) to cryptographically protect the data and not just to support the

entity authentication in the system.

There are other modern cryptographic methodologies which provide different sets of security

guarantees and serve different design goals. Prior to our research, we’ve studied the available practical

implementations of attribute-based encryption [7], searchable encryption [8], private information

retrieval [9], fuzzy identity-based encryption [10], homomorphic encryption [11] but have not found

proposed solutions that would either match the real-world performance requirements or provide wide

enough use-case flexibility.

1.2 Design goals and choices

Hermes uses a typical modern data-processing model, where “pieces” of data are stored in one or more

(possibly remote) logical data stores (databases, files, key-value stores, etc.) and where an access

control policy (ACP) for the stored data is defined.

Hermes has two main design goals:

1. Minimisation of damage from compromisation of separate components of the system;

2. Cryptographic enforcement of the implementation of the determined ACP.

The first goal is achieved through limiting the exposure of data between the components of Hermes and

also through separating them from each other. The second goal is achieved through reliance on

cryptographic solutions rather than on institutional and operational guidelines and correct software

implementation of an ACP. Each access right granted to one or another client within an ACP is

expressed through an appropriate ACK that can only be obtained by this authorised client.

This concept of cryptographic enforcement of an ACP over the data within the Hermes’ scheme allows:

1. Binding an ACP implementation (collection of ACKs) to the actual data, wherever it is stored or

transmitted and making it available to each component of Hermes;

2. Storing an ACP implementation in an arbitrary environment (centralised or distributed) where it

is available to legitimate parties upon request.

Hermes explicitly defines two basic functions in relation to persistent storage – READ and UPDATE.

The remaining functions of the four persistent storage operations (CRUD) [12] – CREATE and

DELETE – are derived from READ and UPDATE and certain implementation constraints (described in

more detail in [5]). It is also possible to grant (in other words – to delegate) and to revoke permissions

to these functions.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

In summary, the ability to READ is implemented as an ability to decrypt data, while the ability to

UPDATE is implemented as an ability to decrypt data and calculate the message authentication code

for this data. The possession of a READ ACK also implies an ability to grant/revoke it. The same holds

true for UPDATE. In general, possession of certain permission implies an ability to grant it.

2. Preliminaries and definitions

2.1 Components

Hermes consists of four components, three of which form the server infrastructure of Hermes and the

last one is a part of the client implementation. Note that a specific implementation of Hermes’ scheme

may consider and contain a particular set of features of the server-side infrastructure. That’s why these

client-server relations are conditional. The components of Hermes are:

1. The Client – an active entity related to the client side of Hermes. It produces and consumes the

data. The Client can be represented by real clients who interact via some UI or by system

processes that are communicating with Hermes’ infrastructure via pre-defined application

programming interfaces (APIs).

2. The Data store – a logical unit for storing and distributing protected data related to the server-

side environment of Hermes. All the protected data in the Hermes’ infrastructure is divided into

“pieces” (records). In Hermes, there are no restrictions on how to divide the data into records.

The access control policy in Hermes is set on a per-record basis. The Data store is responsible

for authorising UPDATE operations on the records (described below).

3. The Keystore – a logical unit for storing and distributing an ACP (expressed as a collection of

protected ACKs), related to the server-side environment of Hermes. The Keystore never denies

key delivery to an authorised client and always fetches the client’s key if it’s available.

The Keystore has no knowledge about the plain-text values of READ/UPDATE ACKs.

4. The Credential store – a logical unit for storing long-term Diffie-Hellman public keys that

represent Hermes entities.

There are two types of cryptographic keys used within the Hermes’ infrastructure:

1. Access control key (symmetric key K);

2. Long-term (static) Diffie-Hellman key pair (public key pk and private key sk).

Note that each entity within the Hermes’ infrastructure possesses its own long-term Diffie-Hellman key

pair and should securely store this private key by itself.

The following sections describe the security functions of Hermes’ and the cryptographic enforcement

of CRUD operations in detail.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

2.2 Сryptographic context of Hermes

Hermes uses three high-level security functions for providing security for basic CRUD operations:

1. Data protection;

2. Access control policy management (creation, distribution, revocation);

3. Authorization of READ/UPDATE operations.

These security functions are implemented with a help of four cryptographic schemes: Symmetric

encryption, Access control key wrapping, Message authentication codes, and Secure communication

sessions. These are described in the following section.

2.3 Cryptographic schemes of Hermes

2.3.1 Symmetric encryption

The cryptographic scheme of symmetric encryption is a pair of algorithms SYM = (E, D).

1. The algorithm E (encryption algorithm) takes a key K, a plaintext R, and returns the ciphertext

)(RR K
K Ε .

2. The algorithm D (decryption algorithm) takes a key K, a purported ciphertext KR and returns a

value)(D K
K R . Consequently,))((ED RR KK .

The security of a symmetric encryption scheme is defined similarly to the definition from [13]. The

preferable algorithms for the symmetric encryption include the well-known block cipher AES [14] or

some of the stream ciphers from the ChaCha family [15].

2.3.2 Access control key wrapping

Access control key wrapping scheme is a pair of algorithms WRAP = (W, U).

1. The algorithm W (wrapping algorithm) takes a public key (from the long-term Diffie-Hellman

key pair) pk, an ACK (a regular symmetric key K) and returns a wrapped ACK:)(KWpk
pkK .

2. The algorithm U (unwrapping algorithm) takes a private key (from the long-term Diffie-Hellman

key pair) sk, a wrapped ACK pkK , and returns an unwrapped ACK:)(U pk
sk KK .

The security of access control key wrapping scheme is defined similarly to a common security

definition of Diffie-Hellman-based DHETM scheme [16]. The preferable candidates for the ACK

wrapping scheme include DHIES [13] or DHETM schemes.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

2.3.3 Message authentication code

A message authentication code (MAC) is a single algorithm T (MAC generation algorithm) that takes a

key K, and a message R, and returns a string)(TR RUT K .

In the Hermes’ terminology, this string is called an Update Tag (UT). Note that we use “implicit”

verification of the UT described in “Authorization of READ/UPDATE operations” section below.

The security of T is defined similarly to the definition in [13]. The preferable candidate for MAC

includes HMAC [5].

2.3.4 Secure session

Secure session scheme is used for establishing secure communication between two entities. Let’s

denote those entities as A (where A possesses a private key skA and a public key pkA that form A’s long-

term Diffie-Hellman key pair) and B (where B possesses a private key skB and a public key pkB that

form B’s long-term Diffie-Hellman key pair).

Secure session includes three phases:

1. Mutual authentication,

2. Key establishment, and

3. Secure data transmission.

During the first phase, A authenticates B and B authenticates A. This stage works under a standard

assumption that long-term public keys pkA and pkB are exchanged via a third-party trusted Certificate

Authority (CA). CA has verified that A indeed possesses skA that corresponds to the pkA. The same is

true for B [18]. In other words, a typical public-key infrastructure (PKI) [19] is used during this phase.

In the Hermes’ terminology, the Credential store server-side component may be considered as a CA.

During the second phase, A and B establish a common session encryption key using Diffie-Hellman

based protocol KE. Actually, A uses KE that takes skA and pkB and returns a shared secret

),(KE BA pkskSS , while B uses KE that takes skB and pkA and returns the same shared secret

),(KE BA pkskSS . The security of KE is defined in [18]. The preferable candidates for the KE

protocol include KEA, Unified Model, or MQV (all with Key Confirmation) schemes [18].

During the third phase, both A and B use a symmetric encryption scheme (defined above) to protect the

data transmitted over the communication channel.

Note that all the communications between the components of Hermes are protected with a help of

the Secure session scheme. The terms “requests”, “receives”, and “sends” (used in the following

sections) imply that a mutually authenticated channel is established between the components and all the

further transmitted data is encrypted.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

2.4 Definitions of the high-level security functions of Hermes

2.4.1 Data protection

Data protection in Hermes acts as an access control-enforcing mechanism. All the sensitive data is

encrypted using symmetric encryption (a traditional stream or block cipher can be used). If an entity

possesses no appropriate symmetric cryptographic key(s), it will not be able to interpret/process the

data. To make it possible to apply different ACPs to different parts of the data, it is logically segmented

into pieces – records. There are no restrictions (imposed by Hermes) on how to divide the data into

records. Let’s denote an arbitrary record as R to be able to define the plain-text data as a set of records:

)....,,,(DATA 21 nRRR

Having n records nRRR ...,,, 21 and n keys nKKK ...,,, 21 , we can define the encrypted data as follows:

)).(E...,),(E),(E(DATA ENCRYPTED 21 21 nKKK RRR
n

Having n records and the corresponding keys, we can define the decrypted data as follows:

))).((ED...,)),((ED)),((ED(DATA DECRYPTED 21 2211 nKKKKKK RRR
nn

Note that such segmented state is not natural for the data. The division of data into sets of records is

conditional (all the records remain concatenated) – a blob of data can be interpreted as single record or

a collection of records. This is achieved through generating a number of data structures that control

distribution of symmetric keys.

The intention of such data segmentation is to provide flexible protection with the help of data access

compartmentalisation where the goal is to maximally reduce the size of the smallest possible data

fragment protected with a single key. While the specific nature of how data is segmented is an issue of

implementation, defining a record to be the smallest element of data protected by a single key enables

Hermes to offer highly granular access control.

By appropriately (securely) distributing the keys nKKK ...,,, 21 to a set of entities (via the Keystore), it

is possible to create an arbitrary ACP that allows those entities to access only limited parts of the data

with per-record granularity.

Note that as we are relying on cryptographic keys to limit the access to different parts of the data, we

need to ensure that these keys do not have statistical interdependencies. That’s why each key

nKKK ...,,, 21 is generated independently from each other.

2.4.2 Access control policy management

As mentioned above, an ACP is expressed as a set of protected ACKs stored in the Keystore related to

a set of encrypted records stored in the Data store. Let’s consider a partial ACP related to a single

record.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

ACP Creation

In its simplest form, an ACP starts with some client (Alice) who wishes to secure and store a record R.

Alice will generate two ACKs, a READ key readRK _ and an UPDATE key updateRK _ . Alice encrypts R

using readRK _ and generates a MAC for R using updateRK _ . She then sends the encrypted record and the

MAC to the Data store.

Alice now will establish a minimal ACP that enables her to subsequently READ and UPDATE

the record R using the symmetric encryption and ACK wrapping schemes. Let’s suppose a client Alice

(who has a long-term Diffie-Hellman key pair (Apk , Ask)) has sent a record R (actually, an encrypted

record)(
_

R
readRKΕ and an Update Tag)(

_
RUT

updateRKR T) to the Data store.

Now Alice should create an initial ACP for the record R by wrapping readRK _ and updateRK _ that she

has previously generated:

)(KW_ R_readpk
pk

readR A

AK ,)(KW_ R_updatepk
pk

updateR A

AK and posting Apk
readRK _ , Apk

updateRK _ to

the Keystore.

Only Alice is able to READ the record R (only Alice is able to unwrap Apk
updateRK _ that she received from

the Keystore using her private key Ask and, consequently, decrypt the encrypted record)(
_

R
readRKΕ

that Alice received from the Data store) and to UPDATE record R (only Alice is able to unwrap
Apk
updateRK _ she received from the Keystore using Ask and, consequently, calculate a correct Update Tag

RUT) that will be validated by the Data store during the processing of an UPDATE transaction.

ACP Distribution

We can define the ACP distribution mechanism that is very similar to ACP creation (as it uses the same

cryptographic schemes). Again, let’s suppose Alice (having her long-term Diffie-Hellman key pair

(Apk , Ask)) has sent a record R (actually, an encrypted record)(
_

R
readRKΕ and an Update Tag

)(
_

R
updateRKT) to the Data store, then has created an initial ACP for the record R (actually Alice has sent

a wrapped ACKs Apk
readRK _ and Apk

updateRK _ to the Keystore) and now Alice wants to grant READ access

to the record R to another client – Bob (who has his long-term Diffie-Hellman key pair (Bpk , Bsk)).

To do this, Alice should securely distribute readRK _ to Bob. Actually, Alice should get Apk
readRK _ from

the Keystore, unwrap it:)(__
A

A

pk
readRskreadR KUK , and wrap it using Bob’s public key Bpk :

)(KW_ R_readpk
pk

readR B

BK and finally send Bpk
readRK _ to the Keystore.

Now the ACP for the record R defines READ/UPDATE access for Alice (Apk
readRK _ , Apk

updateRK _) and

READ access for Bob (Bpk
readRK _).

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

Note that granting the UPDATE access to Bob is almost similar, but here it is updateRK _ instead of

readRK _ that should be wrapped with Bob’s public key Bpk and posted to the Keystore.

ACP Revocation

We can define the ACP revocation mechanism as follows. Let’s suppose Alice (who has a long-term

Diffie-Hellman key pair (Apk , Ask)) has previously granted the READ and UPDATE access rights to

the posted record R to Bob (who has a long-term Diffie-Hellman key pair (Bpk , Bsk)) and Eve (who

has a long-term Diffie-Hellman key pair (Epk , Esk)), and now Alice wants to revoke the UPDATE

access rights from Bob.

The Keystore stores the ACP (to the record R) which is described in the table below.

 Alice Bob Eve

Access to record R READ/UPDATE READ/UPDATE READ/UPDATE

This ACP is represented via ACKs in the table below.

 Alice Bob Eve

Access to record R Apk
readRK _ , Apk

updateRK _ Bpk
readRK _ , Bpk

updateRK _ Epk
readRK _ , Epk

updateRK _

After revocation, the ACP should be changed to:

 Alice Bob Eve

Access to record R READ/UPDATE READ READ/UPDATE

This is represented in terms of ACKs as follows:

 Alice Bob Eve

Access to record R Apk
readRK _ , Apk

newupdateRK __ ,

Apk
updateRK _

Bpk
readRK _ , Bpk

updateRK _ Epk
readRK _ , Epk

newupdateRK __

, Epk
updateRK _

One can see that access revocation (of both READ and UPDATE permissions) involves generating a

new value for the corresponding ACK, updating the Data store content using the new ACK and then

redistributing the new ACK to the clients who should retain access.

Actually, to revoke Bob’s UPDATE permission to R, Alice should restore the existing ACP to R

(getting all the UPDATE ACKs associated with R from the Keystore). Then Alice generates a new

UPDATE ACK newupdateRK __ , performs an authorized updating transaction with R (see section 3.3 for

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

more details), wraps newupdateRK __ twice:)(KW ___ newR_readpk
pk

newreadR A

AK ,

)(KW ___ newR_readpk
pk

newreadR E

EK , and finally sends Apk
newupdateRK __ , Epk

newupdateRK __
 to the Keystore.

Now Bob is unable to unwrap newupdateRK __
(and is also unable to calculate

new
RUT) and,

consequently, Bob is unable to perform UPDATE.

Note that revocation of READ permissions is similar, but contains some additional steps: Alice revokes

UPDATE permission as described above and then additionally generates a new READ ACK

newreadRK __ , re-encrypt R:)(E__ RR
R_read_new

newreadR

K

K
 , performs an authorized updating transaction

with R (see section 3.3 for more details), wraps newreadRK __
twice:)(W ___ newR_readpk

pk

newreadR KK
A

A ,

)(W ___ newR_readpk

pk

newreadR KK
E

E , and finally sends Apk

newreadRK __
, Epk

newreadRK __ to the Keystore.

Implementation note:

While the access control objectives of the system are achieved by generating the new set of ACKs, UTs

and encrypted records, a practical implementation (of the Keystore) should have means of disposing of

the previously valid keys Apk
updateRK _ , Bpk

updateRK _ , Epk
updateRK _ that became redundant for both performance

and security reasons (see [5]).

Security notes:

1. If Bob obtains READ permissions to the record, he will be able to transfer this READ permission

to a third client. Alice won’t be able to prevent this. The same applies to READ/UPDATE

permissions, which can be propagated (granted) by clients who possess these permissions to

other clients, without limitations. Traitor tracing questions [20] are out of scope of Hermes.

 2. UPDATE access to the record can’t be performed without having READ permissions for the

same record. That’s why granting/revoking of UPDATE access rights to R should be

accompanied by verification of the client’s possession of READ access rights to R.

 3. If Alice revokes Bob’s READ access rights to a record R without changing the content of R, it’s

worth remembering that Bob had had a previous opportunity to access to the sensitive data of R

and could have remembered/copied/transferred it. Revocation of READ permission would only

make sense if Alice modifies R and wants Bob to have no knowledge of performed

modifications.

2.5 Authorisation of READ/UPDATE operations

Authorization of READ/UPDATE operations is implemented with a help of symmetric encryption and

MAC schemes. As it was mentioned above, the possession of READ ACK to a record R gives a client

the ability to decrypt the encrypted record R and read its contents.

As with READ, possession of UPDATE ACK to a record R gives a client the ability to calculate the

correct UT and to prove the permission to perform UPDATE on the record R.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

All the records nRR ...,,1 are stored in the Data store with appropriate UTs: nUTUT ...,,1 .

The Update Tags are never fetched back from the Data store as a part of the data query. Rather it is the

Data store that uses them to verify the client’s possession of an appropriate UPDATE ACK and,

consequently, the permission to perform UPDATE.

Let’s suppose Alice (who has a long-term Diffie-Hellman key pair (Apk , Ask)) has previously sent the

record R (encrypted record)(
_

R
readAKΕ and the Update Tag)(

_
RUT

updateRKR T) to the Data store,

defined initial ACP to R (posted Apk
readRK _ , Apk

updateRK _ to the Keystore), and wants to perform READ (in

phase 1) and UPDATE (in phase 2) operations. Actually, Alice does the following:

Phase 1. READ authorisation:

1. Requests and receives Apk
readRK _ from the Keystore and unwraps it:)(__

A

A

pk
readRskreadR KUK ;

2. Requests and receives)(
_

R
readRKΕ from the Data store and decrypts it:

))((ED
__

RR
readRreadR KK . Now Alice is able to READ the record R.

Phase 2. UPDATE authorisation:

1. Performs Phase 1;

2. Requests and receives
Apk
updateRK _ from the Keystore and unwraps it:

)(__
A

A

pk
updateRskupdateR KUK

;

3. Updates R: updatedRR ;

4. Calculates MAC for R and updatedR :)(
_

RUT
updateRKR T ,)(

_ updatedKR RUT
updateRupdated

T ;

5. Encrypts updatedR :)(
_

_

updatedK

K

updated RER
readR

readR ;

6. Sends RUT , readRK

updatedR _ and
updatedRUT to the Data store;

7. The Data store compares the RUT sent by Alice with the stored RUT . If they match, the Data

store authorizes Alice’s UPDATE operation; otherwise the Data store ignores the requested

UPDATE operation.

Note that the stored UTs are never exposed by the Data store and can only be generated with the

knowledge of a proper UPDATE ACK. This validation mechanism allows the Data store to perform

the UPDATE authorization without the knowledge of the UPDATE ACK value.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

2.6 The functional scheme of Hermes

The following illustration demonstrates a functional scheme of a Hermes infrastructure with three

clients (A, B, C) and defined access control policy to the recordsets X, Y, Z and corresponding

records).

Figure 1: The functional scheme of Hermes.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

One can see that the Keystore keeps all the information about the current ACP to all data (encrypted

records: X1, X2, X3, Y1, Y2, Z1 with their Update Tags:
1XUT ,

2XUT ,
3XUT ,

1YUT ,
2YUT ,

1ZUT) in

the Data store.

The following table demonstrates what is actually stored in the Keystore, according to the notation

above:

RECORD ACCESS CONTROL POLICY

X1 A [read | update]; B[read]; C[read].

X2 A[read | update]; B[read | update]; C[read].

X3 A[read | update]; B[read]; C[read | update].

Y1 B[read | update]; A[read | update].

Y2 B[read | update]; C[read | update].

Z1 A[read | update]; B[read | update]; C[read | update].

This table equals the following table:

RECORD ACCESS CONTROL POLICY

X1
Apk

readX
K

_1
, Apk

updateX
K

_1
; Bpk

readX
K

_1
; Cpk

readX
K

_1
.

X2
Apk

readX
K

_2
, Apk

updateX
K

_2
; Bpk

readX
K

_2
, Bpk

updateX
K

_2
; Cpk

readX
K

_2
.

X3
Apk

readX
K

_3
, Apk

updateX
K

_3
; Bpk

readX
K

_3
; Cpk

readX
K

_3
, Cpk

updateX
K

_3
.

Y1
Bpk

readY
K

_1
, Bpk

updateY
K

_1
; Apk

readY
K

_1
, Apk

updateY
K

_1
.

Y2
Bpk

readY
K

_2
, Bpk

updateY
K

_2
; Cpk

readY
K

_2
; Cpk

updateY
K

_2
.

Z1
Apk

readZ
K

_1
, Apk

updateZ
K

_1
; Bpk

readZ
K

_1
, Bpk

updateZ
K

_1
; Cpk

readZ
K

_1
, Cpk

updateZ
K

_1
.

To clarify the notation, let’s remember that, for example, Apk

readZ
K

_1
 means that this ACK can be used by

client A to perform READ operation on the record Z1 (Z1 is encrypted on this ACK:

)(11 _1

_1 ZZ
readZ

readZ

K
K

Ε , while the ACK is itself wrapped:)(KW
11 _ _readZpk

pk

readZ A

AK).

3 CRUD implementation

Using the security functions of Hermes outlined above, we can implement all the four functions of

persistent storage.

The READ function is explicitly defined by data protection and READ authorisation; the UPDATE

function is explicitly defined by data protection and UPDATE authorisation; the CREATE and

DELETE functions are not directly supported by Hermes, but can be defined implicitly.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

The CREATE function is defined by operation of the READ and UPDATE functions plus the ACP

management (creation and distribution) security function, while the DELETE function is defined by

operation of the UPDATE function with a nullable record. Granting rights to CREATE is out of scope

of Hermes methodology. However, several approaches are suggested in [5].

3.1 CREATE

The process of creation of a record R consists of two phases:

1. R is created, protected, sent, and stored in the Data store;

2. The access control policy for the record R (which is now stored in the Data store) is created and

it is sent to the Keystore.

The overall process of creation of the record R and access control policy distribution for it is outlined in

the following illustration:

Figure 2: CREATE.

1. Creates record R;

2. Generates ACKs: readRK _ , updateRK _ ;

3. Encrypts R :)(E
_

_ RR
readR

readR
K

K
 ;

4. Calculates update tag:)(T
_

RUT
updateRKR .

Sends readRK
R _ , RUT

Requests own public key Apk

 Receives requested public key Apk

1. Wraps readRK _ :

)(W __ readRpk
pk

readR
KK

A

A ;

2. Wraps updateRK _ :

)(W __ updateRpk
pk

updateR
KK

A

A ;

Sends Apk
readR

K
_

;

Sends Apk

updateR
K

_
.

CLIENT (ALICE) DATA STORE CREDENTIAL STORE KEYSTORE

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

Note that Alice may create an empty record (null) and grant READ/UPDATE permissions to this

record to Bob. Bob then can perform UPDATE on that record. This way, Alice only acts as a creator of

the ACP, while Bob acts as data provider (see [5] for more details).

3.2 READ

The process of performing READ on the record R consists of two phases:

1. Getting and unwrapping the READ ACK to R from the Keystore;

2. Getting and decrypting the encrypted R form the Data store.

The overall process of reading of the record R is outlined in the following illustration:

Figure 3: READ.

Note that Alice doesn’t receive (nor she is permitted to receive) the update tag UTR, which is

considered to be secret information with respect to other clients with READ permissions to R (see [5]

for more details).

Requests wrapped READ ACK Apk
readR

K
_

 for record R

Receives requested Apk

readR
K

_

Requests encrypted record readRK
R _

Receives requested readRK
R _

1. Unwraps READ ACK:)(U
__

A

A

pk
readRskreadR KK ;

2. Decrypts record R:)(D _ readR

R_read

K
K RR

and processes it.

CLIENT (ALICE) DATA STORE KEYSTORE

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

3.3 UPDATE

The process of performing UPDATE on the record R (in other words – updating the record R) consists

of three phases:

1. Getting and unwrapping the READ and UPDATE ACKs to the record R from the Keystore;

2. Getting and decrypting the encrypted record R from the Data store;

3. Updating the record R and authorising the updates.

The overall process of updating the record R is outlined in the following illustration:

Figure 4: UPDATE.

1. Unwraps Apk
readRK _

:)(U __
A

A

pk
readRskreadR KK ;

2. Unwraps Apk
updateRK _

:)(U __
A

A

pk
updateRskupdateR KK ;

3. Decrypts readRK
R _ :)(D _ readR

R_read

K
K RR ;

4. Calculates current update tag:)(T
_

RUT
updateRKR ;

5. Updates R : updatedRR ;

6. Calculates new update tag:)(T
_ updatedKR RUT

updateRupdated
 ;

7. Encrypts updatedR :)(E
_

_

updatedK

K

updated RR
readR

readR .

Receives requested Apk
readRK _ , Apk

updateRK _

Requests encrypted record readRK

R _

Receives requested readRK
R _

Requests wrapped READ and UPDATE ACKs for record R : Apk
readRK _

, Apk
updateRK _

Sends RUT ,
updatedRUT , readRK

updatedR _

 1. Checks storedRR UTUT _ ; if false, ignores UPDATE;

2. Overwrites readRK
R _ with readRK

updatedR _ ;

3. Overwrites storedRUT _

with updatedUT .

CLIENT (ALICE) DATA STORE KEYSTORE

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

Upon receiving the data, the Data store verifies that Alice possesses the valid UPDATE ACK by

checking if the equation storedRR UTUT _ holds (if it doesn’t hold, the Data store ignores the

requested UPDATE) and overwrites the stored encrypted record and Update Tag with new values. This

way the Data store never processes the records in plaintext.

3.4 DELETE

Deleting records is a particular simplified case of performing UPDATE on the records we want to

delete. In DELETE, the updated record becomes NULL, so there is no need for the updater to encrypt

the updated record and put it into the Data store.

The overall process of DELETING a record R is outlined in the following illustration:

Figure 5: DELETE.

Requests wrapped READ and UPDATE ACKs for record R : Apk
readRK _

, Apk
updateRK _

 Receives requested Apk
readRK _

, Apk
updateRK _

Requests encrypted record readRK
R _

Receives requested readRK
R _

1. Unwraps Apk
readRK _

:)(U __
A

A

pk
readRskreadR KK ;

2. Unwraps Apk
updateRK _

:)(U __
A

A

pk
updateRskupdateR KK ;

3. Decrypts readRK
R _ :)(D _ readR

R_read

K
K RR ;

4. Calculates current update tag:)(T
_

RUT
updateRKR ;

5. Calculates new update tag:)(T
_

NULLUT
updateRKNULL ;

Sends RUT , NULLUT

 1. Checks storedRR UTUT _ ; if false, ignores DELETE;

 2. Deletes readRK
R _ , storedRUT _ .

CLIENT (ALICE) DATA STORE KEYSTORE

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

Security note:

The illustration (Figure 4) in the section 3.3 considers the UT to be sensitive information. This may at

first seem unusual as the UT is simply a MAC. But in this context, the UT is actually a token that

authenticates a secure operation. This approach enables the operation of the Data store to be restricted

solely to the store and retrieval of encrypted data. While leaking the UT does not reveal any

information about the record itself, this does potentially give an attacker the opportunity to replace the

record data with garbage data (or to blindly delete the record). It is the role of higher-level application

software to detect missing or corrupted data and that reliable backup procedures are in place for critical

records.

4 Security considerations

4.1 Threat model and security assumptions

Hermes is designed to operate under a restrictive threat model in which:

1. An attacker (external attacker or malicious server) may compromise one or more components

such that:

1.1 partial or complete ciphertext leakage may occur,

1.2 partial or complete ACP model leakage may occur;

2. A trusted client may “behave” dishonestly;

3. An external passive/active attacker may be present in the communication channels.

This model allows us to make some basic security assumptions about the operational process within

Hermes and assess them as part of the overall security evaluation.

Assumption 1. Hermes clients are trusted entities.

Assumption 2. Encrypted data and ACP to these data circulate only within the Hermes

infrastructure (and even if ciphertext is leaked, this will not compromise the

whole system). Sensitive data appears as plain-text only in the client’s context.

Assumption 3. Basic execution environments of all Hermes’ components (hardware or

operating systems) are trustworthy. Each component strictly follows the set of

actions defined and allowed by Hermes.

Assumption 4. All the Hermes’ data storage components support backup and logging

mechanism. They also operate correctly and without failures.

Assumption 5. All the communication between Hermes’ components is performed via

authenticated and encrypted channels.

Assumption 6. All the cryptographic primitives used are well-studied (have proven security) by

experts and are properly implemented.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

Practical extensions to these assumptions (temporary hardware failures, data corruption, denial of

service of some components, appropriateness of crypto implementation to side-channel risks of certain

platforms etc.) are assessed in the implementation considerations [5].

4.2 Trusted clients

Within Hermes, clients are trusted to:

1. Properly operate with the data according to the defined ACP;

2. Further distribute access rights to the data they’ve obtained access to, to other clients (a client

with certain access rights may only distribute access rights of the same level or lower – i.e. a

client with permission to READ and UPDATE may further distribute permissions to READ and

UPDATE, or just to READ to another client).

4.3 Security analysis

Hermes separates the important cryptographic operations from the network-facing code. This greatly

reduces the potential attack surface, minimises the damage from discovered zero-day vulnerabilities

[21], and simplifies the security audit of the system.

In our security analysis we consider the four key Hermes components (Client, Data store, Keystore,

Credential store) together with their communication from the standpoint of the degree of compromise

of the system and its type.

We use the term “compromisation” to indicate the most severe and complete form of breakage of an

entity’s defenses (as in “adversary gains total control”).

The table below demonstrates 5 levels of compromisation, ordered by the increase in the enemy’s

capabilities and the negative consequences for the system respectively.

Level Compromised entities Adversary capabilities The worst security

consequences

1 Passive access to all plaintext

communication channels

Can read wrapped ACKs

transmitted over channel

Ciphertext-only attack (COA)

on ACK wrapping
1

Can read encrypted

sensitive data transmitted

over channel

COA on data protection
2

Can read UTs of encrypted

records transmitted over

channel

COA on MAC
3

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

2 Active access to all plaintext

communication channels

All capabilities of 1 COA on ACK wrapping, data

protection and MAC

Can block all the

communication channels
4

DoS
5

3 Keystore Can read wrapped ACKs COA on ACK wrapping

Can delete wrapped ACKs DoS

Can write garbage instead

of ACKs

Unauthorised access revocation

/ DoS

Can disable Keystore DoS

4 Credential store Can read public

credentials

-

Can delete public

credentials

DoS

Can write forged public

credentials

Impersonation

Can disable Credential

store

DoS

5 Data store Can read encrypted data

and UTs

COA on data protection and

MAC

Can delete encrypted

sensitive data

DoS

Can write garbage instead

of data

DoS

Can force all UT

verifications to

succeed/fail

Unauthorised UPDATE,

DELETE, access revocation /

DoS

Can disable Data store DoS

6 Keystore, Data store All capabilities of 3, 5 COA on ACK wrapping, DoS,

unauthorised access revocation

/ DoS, COA on data protection

and MAC, unauthorised

UPDATE / DELETE

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

7 Keystore, Credential store All capabilities of 3, 4 COA on ACK wrapping, DoS,

unauthorised access revocation

/ DoS, impersonation

8 Credential store, Data store All capabilities of 4, 5 DoS, impersonation, COA on

data protection and MAC,

unauthorised UPDATE,

DELETE

9 Keystore, Credential store,

Data store

All capabilities of 3, 4, 5 COA on ACK wrapping, DoS,

unauthorised access revocation

/ DoS, impersonation, COA on

data protection and MAC,

unauthorised UPDATE,

DELETE

1

COA on ACK wrapping – Ciphertext-only attack on the key wrapping algorithm.
2

COA on data protection – Ciphertext-only attack on the encryption algorithm.
3

COA on MAC – Ciphertext-only attack on the message authentication code.
4
 Block communication channels – Man-in-the-middle adversary is able to prevent sending / receiving

of data (e.g. deleting or modifying it) for the system clients/services.
5
 Full DoS – Complete system’s denial of service, with (optional) full or partial data loss.

Practical attacker types and non-cryptosystem mitigation for many attacks are assessed in the

implementation [5].

4.4 Security guarantees

We would assert that Hermes offers the following security guarantees:

1. Compromisation of a single entity in the system causes only limited damage;

2. All the sensitive information appears in plain text only within the client’s context;

3. Data is protected in granular form (per-record);

4. All communications are protected with end-to-end encryption and authentication;

5. Data store imports/stores/exports only veritable protected data;

6. Keystore imports/stores/exports only veritable wrapped ACKs;

7. Credential store imports/stores/exports only veritable public credentials;

8. Each data record is protected with a unique key;

9. Each data record has legitimate access control policy.

The following table demonstrates the security guarantees safeguarded by Hermes in the case of a

system compromisation.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

Compromisation

level

Compromised entities Number of safeguarded

guarantees

1 Passive access to all communication

channels

1, 2, 3, 4, 5, 6, 7, 8, 9

2 Active access to all communication

channels

1, 2, 3, 5, 6, 7, 8, 9

3 Keystore 1, 2, 3, 4, 5, 7, 8

4 Credential store 1, 2, 3, 4, 5, 6, 8, 9

5 Data store 1, 2, 4, 6, 7, 9

6 Keystore, Data store 1, 2, 4, 7

7 Keystore, Credential store 1, 2, 3, 4, 5, 8

8 Credential store, Data store 1, 2, 4, 6, 9

9 Keystore, Credential store, Data store 1, 2, 4

In summary, even in the most extreme case of compromisation where all the server side components

are compromised, several security guarantees are preserved and damage is limited.

An adversary can potentially perform a denial-of-service attack on the complex infrastructure and

ciphertext-only attacks on ACKs wrapping, data protection, and MAC in response to the considered

security assumptions.

Some damage can also be done in the following cases:

1. Unauthorised access revocation (see the second attack in the next section – Unauthorised

revocation of UPDATE permissions);

2. Impersonation – if the Credential store gets broken;

3. Unauthorised UPDATE (only for a legitimate client with READ permissions, who broke the

Data store),

4. DELETE, access revocation / DoS – in a case when the Data store gets broken.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

4.5 Potential attacks

During the security analysis, we’ve identified the most probable compromisations of the base

assumptions that lead to actual risks. It is worth noting that for an active adversary performing such

attack would be very hard, since the breakage points are popular, well studied cryptographic

mechanisms.

4.5.1 Unauthorised UPDATE

Conditions:

1. A malicious client Eve who has READ permission to the record R (meaning that Eve is able to

unwrap the wrapped READ ACK Epk
readRK _);

2. An active access to the communication channel between an honest client Bob who has

READ/UPDATE permissions (Bob is able to unwrap both wrapped READ and wrapped

UPDATE ACKs Bpk
readRK _ , Bpk

updateRK _).

This attack violates security Assumption 5.

Description:

Eve is present in the communication channel and waits for Bob to perform the UPDATE operation on

the record R. When Bob sends the RUT , readRK

updatedR _ ,
updatedRUT (see details in the “CRUD implementation”

section above), Eve forges an encrypted record: readRreadR K

forged

K

updated RR __ . The Data store compares the RUT

received from Bob with the stored RUT (which are equal because Bob has legal UPDATE permission)

and authorizes UPDATE operation with forged (by Eve) updated record readRK

forgedR _ .

Consequences:

An unauthorized UPDATE of a single record by a malicious client who has READ permissions to that

record.

4.5.2 Attack on the Keystore (unauthorised rescinding of UPDATE permissions)

Conditions:

1. A malicious client with READ permissions (Eve);

2. A failure (accidental or intentional) in the normal operation of the Keystore (violation of

Assumption 4).

Description:

If Eve manages to cause an intentional (or accidental) failure in the correct functioning of the Keystore

(such that the Keystore contains a copy of a wrapped UPDATE ACK incorrectly assigned to Eve), Eve

will be able to use it to rescind the READ/UPDATE permissions from the legal authorized clients

or/and grant the permission to rescind the READ/UPDATE permissions from the legal authorized

clients to other clients who possess READ permissions.

This attack may take place because a minimal implementation of the Keystore uses the simple

existence of a READ or UPDATE ACK to validate that a client has these permissions when granting

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

them to another client. Similarly, the Keystore cannot verify if the ACK acquired through a grant

READ/UPDATE is valid. This presents opportunities for attacks whereby a client who gains an invalid

ACK (or maliciously uses an existing one) can propagate invalid ACKs, replacing the existing valid

ones.

Consequences:

A possibility of an unauthorised revocation of READ/UPDATE permissions from all the clients with

READ/UPDATE access rights. The worst possible outcome of such attack is a denial of service by

corruption of the access control policy (the Data store is not compromised in the course of this attack).

Mitigation:

Backup/recovery of the Keystore’s content, transactional logging, non-volatile writes (versioned

writes). Additional mechanisms for further validation of the GRANT of access rights procedure is

considered an area for further work. It is further discussed in [5].

5 Implementation considerations and further work

5.1 Implementing Hermes-based security tools

We believe that Hermes is a flexible and scalable scheme, which can be applied in a wide range of use-

cases. In a real-world implementation of a Hermes-based security system, the location (remote or local)

of the components may vary depending on the architecture and transport infrastructure of the protected

information system. Wherein, the security properties (guarantees) of a protected system may expand

with a help of an additional (organisational or technical) security methods.

We also strongly recommend reading the implementation-related document on Hermes [5] for better

understanding of the way Hermes operates in an actual practical setting. In that document you can find

a lot of useful information i.e. performance analysis, detailed specifications, and suggestions that can

be useful for a practical introduction of Hermes into existing information systems.

5.2 Reference implementation

To provide a brief insight into the possible implementations of Hermes security system, a highly

abstract reference implementation ‘hermes-core’ is released in open-source [4].

6 Conclusion

Hermes is a novel practical cryptographic scheme intended to effectively solve real-life issues with

common security requirements. Hermes provides end-to-end encryption between entities,

cryptographic enforcement of access control policy distribution related to data compared with existing

operational and algorithmic methods, processing sensitive data on the server side only in encrypted

form.

Hermes can mitigate a wide range of threats and withstand full or partial compromise of its separate

components, while still preserving the security of the sensitive data.

http://www.cossacklabs.com/

© 2018, Cossack Labs Limited, www.cossacklabs.com

7 Acknowledgments

The authors would like to note that the shaping up and completion of the present scientific paper

describing Hermes would be impossible without the individual contributions and collective work of the

following persons:

• Anastasiia Voitova, anastasi@cossacklabs.com;

• Artem Storozhuk, storojs72@gmail.com;

• Dmytro Kornieiev, dmitry@cossacklabs.com;

• Karen Sawrey (aka Alona Ivanova), karen@cossacklabs.com.

8 References

[1] Growing Networks: Detours, Stunts and Spillovers / M. Aanestad, O. Hanseth /

http://heim.ifi.uio.no/~oleha/Publications/iris24.pdf.

[2] Risk management guide for information technology systems / NIST Technical report SP 800-30 /

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30.pdf.

[3] Internet of Things / F. Xia, L. T. Yang, L. Wang, A. Vinel / https://pdfs.semanticscholar.org/930c

/4981e87584afa7e6f1f4977323e365aae097.pdf.

[4] Cossack Labs GitHub repository / https://github.com/cossacklabs/hermes-core.

[5] Cossack Labs website resources – Implementing Hermes-based Security Systems /

https://www.cossacklabs.com/hermes/implementing-hermes-based-systems/.

[6] Cryptographic Enforcement of Information Flow Policies without Public Information / J. Crampton,

N. Farley, G. Gutin, M. Jones, B. Poetterng / https://arxiv.org/pdf/1410.5567v2.pdf.

[7] Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure

Realization / B. Waters / https://eprint.iacr.org/2008/290.pdf.

[8] Searchable Symmetric Encryption: Improved Definitions and Efficient Constructions / R.

Curtmola, J. Garay, S. Kamara, R. Ostrovsky / https://eprint.iacr.org/2006/210.pdf.

[9] Private Information Retreival / B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan /

http://madhu.seas.harvard.edu/papers/1995/pir-journ.pdf.

[10] Fuzzy Identity-Based Encryption / A. Sahai, B. Waters / https://eprint.iacr.org/2004/086.pdf.

[11] A Guide to Fully Homomorphic Encryption / F. Armknecht, C. Boyd, C. Carr, K. Gjosteen, A.

Jaschke, C. A. Reuter, M. Strand / https://eprint.iacr.org/2015/1192.pdf.

[12] The CRUD Security Matrix: A Technique for Documenting Access Rights / D. L. Lunsford, M. R.

Collins / http://ocean.otr.usm.edu/~w300778/is-doctor/pubpdf/sc2008.pdf.

[13] DHIES: An encryption scheme based on Diffie-Hellman Problem / M. Abdalla, M. Bellare, P.

Rogaway / http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf.

[14] Announcing the ADVANCED ENCRYPTION STANDARD (AES) / FIPS publication 197 /

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf.

[15] The ChaCha family of stream ciphers / D. J. Bernstein / https://cr.yp.to/chacha.html.

[16] Authenticated Encryption in the Public-Key Setting: Security Notions and Analyses / J. H. An /

https://eprint.iacr.org/2001/079.ps.

[17] Keying Hash Functions for Message Authentication / M. Bellare, R. Canetti, H. Krawczyk /

https://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf.

http://www.cossacklabs.com/
http://heim.ifi.uio.no/~oleha/Publications/iris24.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30.pdf
https://pdfs.semanticscholar.org/930c/4981e87584afa7e6f1f4977323e365aae097.pdf
https://pdfs.semanticscholar.org/930c/4981e87584afa7e6f1f4977323e365aae097.pdf
https://github.com/cossacklabs/hermes-core
https://www.cossacklabs.com/hermes/implementing-hermes-based-systems/
https://arxiv.org/pdf/1410.5567v2.pdf
https://eprint.iacr.org/2008/290.pdf
https://eprint.iacr.org/2006/210.pdf
http://madhu.seas.harvard.edu/papers/1995/pir-journ.pdf
https://eprint.iacr.org/2004/086.pdf
https://eprint.iacr.org/2015/1192.pdf
http://ocean.otr.usm.edu/~w300778/is-doctor/pubpdf/sc2008.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/dhies.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://cr.yp.to/chacha.html
https://eprint.iacr.org/2001/079.ps
https://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf

© 2018, Cossack Labs Limited, www.cossacklabs.com

[18] Authenticated Diffie-Hellman Key Agreement Protocols / S. Blake-Wilson, A. Menezes /

https://link.springer.com/content/pdf/10.1007/3-540-48892-8_26.pdf.

[19] Public Key Infrastructure Implementation and Design / S. Choudhury, K. Bhatnagar, W. Haque /

https://www.e-reading.club/bookreader.php/142115/Choudhury_-_Public_Key_Infrastructure_implem

entation_and_design.pdf.

[20] Traitor Tracing with Constant Size Ciphertext / D. Boneh, M. Naor /

http://crypto.stanford.edu/~dabo/papers/const-tt.pdf.

[21] Why Your Encrypted Database Is Not Secure / P. Grubbs, T. Ristenpart, V. Shmatikov /

https://eprint.iacr.org/2017/468.pdf.

http://www.cossacklabs.com/
https://link.springer.com/content/pdf/10.1007/3-540-48892-8_26.pdf
https://www.e-reading.club/bookreader.php/142115/Choudhury_-_Public_Key_Infrastructure_implem
https://www.e-reading.club/bookreader.php/142115/Choudhury_-_Public_Key_Infrastructure_implem
http://crypto.stanford.edu/~dabo/papers/const-tt.pdf
https://eprint.iacr.org/2017/468.pdf

