
Hermes

End-to-end cryptographic access control for distributed systems

Favorable use

The increasing number of infrastructure breaches, growing distrust in “walled garden” architectures, “perimeter security” and sufficiency of classical 

encryption schemes creates a demand for end-to-end encrypted online services.


Cryptographic framework Hermes provides the essential building blocks for creating end-to-end encrypted zero-knowledge architectures.


Hermes allows deploying end-to-end encrypted data exchange, sharing, and collaboration in your apps. It acts as a protected data circulation layer 

with cryptographic access control for your distributed application, with zero security risk of data exposure from servers and storage.

Hermes is useful for data protection within environments with complex yet strict security demands towards access policy.


The richer the data model is, the easier it is to protect it with Hermes and ensure deep integration of cryptography into the app’s security tools. 

Combined with proper key management, Hermes becomes a platform for secure data turnover on all stages of your application.

Hermes product sheet, Q1 2022

KEY BENEFITS

Data leaks don’t matter

The sensitive data is always encrypted 

during its lifecycle on all stages.

Developer-friendly API

Easy-to-manage encryption that reduces


the security workload for engineers.

Zero Knowledge, Zero Trust

Prevents insider and outsider data 

leakage.

Fast and secure

Works without re-encrypting an 

excessive amount of data.

Cryptographic access control

Enforce group policies, integrate with 

PKI and AIM, while data is encrypted.

Secure distributed collaboration

Collaborate on data structures with 

cryptographically-checked permissions.

AGPL 3.0 license for assessment and trial.

Commercial license for commercial usage: more integration 

languages, commercial support.

Server OS: CentOS, Debian, Ubuntu.

Storage: SQL/NoSQL databases, KV stores, filesystems.

Core library: C/C++.

Application languages: C/C++, Python, Go.

compatibility

License

Typical use cases

Data security in healthcare and fintech apps that build


their processes around sensitive personal data (PII, PHI, EHR, FHIR).

Share documents across users with accountable logging, enforcing 

read/write policies while keeping data end-to-end encrypted.

Reaching compliance with privacy regulations through complete 

avoidance of processing unencrypted data in data lake, DWH.

Automated sensitive data processing: enterprise record 

management, business process automation, business applications 

that operate with customers’ data at scale.

Security in data sharing applications: from shared storages to 

specialised cloud sharing and collaboration apps.



Threat model Access rights

Trust model

learn more

Object modeL

SecurITY model

Hermes product sheet, Q1 2022

Hermes was built to function in a very restrictive


threat model:

Hermes operates with the asymmetric key pairs and their IDs as 

finite vessels of authentication. Each record within Hermes document 

is encrypted via a certain sequence of cryptographic transformations, 

depending on the rights assigned to public keys of users.

Data owners are considered to be the sole Source of Truth for both 

data and access rights. It is enforced cryptographically.

Read the Scientific and Implementation papers

Hermes Open-Source GitHub

Hermes documentation 

Request a demo of Hermes-based platform

 about the 

mathematical and security model of Hermes and its public proof 

of concept implementation details



Visit the  repository to see the code 

and examples.



Read the and use cases online.



 to test end-to-end 

encryption, measure performance and try Hermes with different 

datastores

A recordset in Hermes terminology means a list of records where 

at least one is non-protected (public, refence identifier) and the 

others are protected (private, sensitive data). 



Hermes was built to work with the real-world entities: JSON 

documents, files, etc. However, traditional RDBMS row (or sub-set 

of cells in a row) can also be presented as a Hermes document 

(with either a private key or a row number being a public record).

Hermes can be mapped to the typical client-server architecture 

with the following security model:

Hermes separates the cryptographic operations from the 

network-facing code: it reduces the potential attack surface, 

minimises the damage from discovered zero-day vulnerabilities, 

and simplifies the security audit of the system. 



Even during the most extreme incidents (where all the server-side 

components are compromised), most security guarantees are 

preserved and the damage is limited (sensitive information 

appears in plain text only within one client’s context).

 each system entity (user or service) can be compromised;

 data storage can be dumped;

 protected information can be partially leaked;

 data object model can be leaked;

 active attackers may be present in the communication channels.

Security guarantees

1. The compromise of a single entity from the system causes only 

limited damage.

2. All the sensitive information only appears in plain text in the 

system user/service’s context exclusively.

3. Data is protected in a granular form (per record/document).

4. All communications are protected with end-to-end encryption.

5. Each data record is protected with a unique encryption key.

6. Each data record may have its own flexible access control 

policy.

 an absence of a central point of security failure (sensitive data 

being compromised);

 no access to both cryptographic keys and sensitive data in 

plain text for the server-side;

 end-to-end authenticated encryption between all the 

components (both server-side and client-side).

https://www.cossacklabs.com/hermes/
https://github.com/cossacklabs/hermes-core
https://docs.cossacklabs.com/hermes/
mailto:sales@cossacklabs.com

